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Steady three-dimensional convection flows induced by the knot instability of two- 
dimensional convection rolls are studied numerically for various Prandtl numbers. 
The Galerkin method is used to obtain the three-dimensional solutions of the basic 
equations in the case of rigid, infinitely conducting boundaries. These solutions 
exhibit the typical knot-like structure superimposed onto the basic rolls. The Nusselt 
number and kinetic energy of motion do not differ much for two- and three- 
dimensional solutions and the toroidal part of the kinetic energy associated with 
vertical +orticity always remains a small fraction of the total in the case of the knot 
solution. The analysis of the steady solutions is complemented by a stability analysis 
with respect to disturbances that fit the same horizontal periodicity interval as the 
knot solution. All instabilities correspond to Hopf bifurcations. Some example of 
finite-amplitude oscillatory knot convection are presented. 

1. Introduction 
In  the past few decades the problem of convection in a layer heated from below has 

played an important role in the progress of our understanding of the evolution of 
complex flows. Because a number of supercritical bifurcations can be followed 
experimentally as well as theoretically as the Rayleigh number is increased from its 
critical value, the successive occupation of new degrees of freedom of motion can be 
studied in detail. While motions in the form of rolls represent the simplest and most 
symmetric form of convection, they do not persist as a stable solution of the basic 
equations for Rayleigh numbers much beyond 2 x lo4 in the case of rigid boundaries. 
An interesting variety of three-dimensional forms of convection replaces the rolls, 
dependent on the Prandtl number. The predominant examples are bimodal 
convection at  large Prandtl numbers, knot convection at  moderate Prandtl numbers 
and oscillatory convection in low-Prandtl-number fluids. Typical properties of the 
three-dimensional forms of convection can already be inferred from the stability 
analysis of rolls as has been discussed, for example, in the reviews by Busse (1978, 
1981). Other properties such as the heat transport require the numerical solution of 
the three-dimensional nonlinear problem. Moreover, the analysis of the stability of 
the three-dimensional solutions offers the opportunity to identify the third 
bifurcation of the system if the onset of convection is counted as the first 
bifurcation. 

The nonlinear properties of bimodal and oscillatory convection have been the focus 
of previous work (Frick, Busse I% Clever 1983; Clever & Busse 1987). There has also 
been considerable interest in the onset of periodic and aperiodic time dependence, 
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usually confined to the case when the Prandtl number equals unity (Lipps 1976; 
McLaughlin & Orszag 1982 ; Griitzbach 1982 ; Curry et al. 1984). But the phenomenon 
of knot convection has remained unexplored, to our knowledge. Knot convection 
differs from bimodal convection a t  high Prandtl numbers in that the momentum 
advection term plays an important role. Even though the knot instability and the 
cross-roll instability leading to bimodal cells exhibit the same symmetry, they can be 
clearly distinguished as two separate maxima of the growth rate as a function of the 
wavenumber along the roll axis, as is demonstrated in figures 12 and 13 of Bolton, 
Busse & Clever (1986). For Prandtl numbers between 2 and 10 the knot instability 
plays a prominent role in limiting the region of stable rolls towards high 
wavenumbers. The distinct properties of knot convection can be noticed, however, 
over a much wider range of Prandtl numbers. Knot convection can be regarded as 
the initial stage of spoke-pattern convection which according to experimental 
observations is the predominant form of high-Rayleigh-number convection at  
moderate Prandtl numbers (Busse 1981). 

2. Mathematical formulation of the problem 
We consider a horizontal fluid layer of thickness d which is heated from below. 

Using d as lengthscale, d 2 / K  as timescale, and ~ v / y q d ~  as the scale for the 
temperature we can cast the basic equations in a dimensionless form. As usual, the 
symbols v ,  K ,  y ,  and g refer to  the kinematic viscosity, the thermal diffusivity, the 
coefficient of thermal expansion and the acceleration due to gravity, respectively. We 
shall assume the Boussinesq approximation such that the velocity field can be 
described by the following general representation for a solenoidal vector field : 

u = V x (V x k $ ) + V  x k$ 6 # + ~ $ .  (2.1) 

The unit vector k is directed opposite to gravity and parallel to the x-axis of a 
Cartesian system of coordinates. The origin is assumed to lie on the midplane of the 
layer. By taking the x-components of the (curl)' and of the curl of the equations of 
motion we obtain two equations for the scalar functions $ and $: 

V 2 A 2  9 = { E -  [(a$ + 83) V(6$ + E $ ) ]  + A ,  $}, 

(2.2a) 

(2.2b) 

where A ,  denotes the two-dimensional Laplacian, A ,  = a 2 / a x 2  + a2/ay2. The heat 
equation for the dimensionless deviation 6 of the temperature from the static 
solution of the problem is given by 

(2.2c) 
a 
at 

V 2 8 - R A , $  = ( 6 $ + ~ $ ) * V 6 + - 6 .  

The Rayleigh number R and the Prandtl number P are defined in the usual way, 

Y 
R =  yg(T2--TI)d3 . P = - .  

VK K '  
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where TI and T, denote the temperatures a t  the upper and the lower isothermal 
boundaries. Because of the no-slip conditions a t  these boundaries, the boundary 
conditions of the problem are given by 

a 
$ = - $ = $ = O = O  az at z = * &  (2.3) 

Equations (2.2) together with boundary conditions (2.3) can be solved by the 
Galerkin method. We first consider the problem of three-dimensional steady 
solutions which are periodic in x and in y. By expanding the dependent variables into 
complete systems of functions that satisfy the boundary conditions we obtain the 
following representations : 

$ = C azmn cos la, x cos may yg,(z) = C almn Q l m n ,  ( 2 . 4 ~ )  

@ = C cZmn sinla,x sinma,y sinnX(z+i) E C clmn !Pzmn, (2.46) 

1 ,  m ,  n 1 ,  m ,  

1 ,  m ,  n L m , n  

0 = C bzmn cosla,x cosma,y sinnn(z+i) = C blmnOlmn, ( 2 . 4 ~ )  
1 ,  m ,  n 1 ,m,n  

where the summation is extended over the domain 0 < 1, m < CO, 1 6 n < 00. The 
coefficients soon, cOmn, cZon can be set equal to  zero without any effect on the velocity 
field v .  The functions g, (z )  have been introduced by Chandrasekhar (1961, p. 625). 
Their definition can also be found in Clever & Busse (1974). 

In writing (2.4) we have assumed that $ is a symmetric function in x as well as in 
y. This property is suggested by the symmetry of the knot instability which induces 
the transition from the basic roll solution to the knot solution. Starting with the x- 
independent solutions for rolls Busse & Clever (1979) found that the knot instability 
has the same symmetry properties as a flow in the form of rolls a t  right angles to the 
given rolls. In  the present analysis the two wavenumbers ay and a, will be chosen in 
accordance with the region of predominant knot instability in the (R, P, a,)-space as 
shown in the paper by Bolton et al. (1986). The equations (2.2) require, of course, that 
$ and 8 have the same symmetry with respect to x and y, while @ has the opposite 
symmetry. There is yet another symmetry that is useful in reducing the 
computational effort. Since the basic roll solutions exhibit non-vanishing coefficients 
aomn only for even m+ n, the knot instability induces non-vanishing coefficients almn 
for odd m and n. Thus the knot solution is characterized by the property that the 
coefficients almn and bzmn vanish unless 1 + m + n  is an even integer. The corresponding 
non-vanishing coefficients clmn are characterized by an odd sum 1 + m + n. 

After inserting (2.4) into the basic equations (2.2) we obtain algebraic equations for 
the coefficients aijL, bi jk ,  and cijk by multiplying (2.2a, b, c )  with the functions QZik,  

Yijk, and O,,, respectively, and averaging the result over the fluid layer. There is no 
need to write down the algebraic equations explicitly. They are of the same form as 
equations (2.12) of Busse & Frick (1985). In  order to obtain an approximate 
numerical solution of the infinite system of algebraic equations, it has to be 
truncated. Following the procedure used in the recent study of oscillatory convection 
by Clever & Busse (1987) we neglect all coefficients and corresponding equations with 
indices satisfying the condition 

i + j + k  > N,.  (2 .5 )  
I2 FLM 198 
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Typically an even integer N ,  will be selected although this choice discriminates 
against the representation for $. But since the coefficients cijk are generally smaller 
than corresponding coefficients aijk the choice of an even truncation parameter seems 
to be justified. For prescribed values of the parameters R, P,  a, and ay the truncated 
system of algebraic equations is solved by the Newton-Raphson iteration method. 
A good initial guess for the coefficients is usually required in order to achieve 
convergence to the desired three-dimensional solution. Usually the initial guess is given 
by a neighbouring solution and the parameters R, P, a,, and ay can thus be varied 
only in sufficiently small steps. The first solution has been obtained by starting with 
the two-dimensional solution in the form of rolls with the eigenvector of the knot 
instability superimposed onto it. Since the amplitude of the eigenvector is not 
determined by the stability analysis, a suitable trial value must be chosen. The 
general experience has been that much closer initial guesses are required for three- 
dimensional solutions than for two-dimensional solutions with the same value of 
N,.  Once converged solutions have been obtained, it is usually not difficult to 
increase N ,  until properties of the solutions that are sensitive to N, ,  such as the 
Nusselt number, no longer change by more than 1 %. Computer expenses, of course, 
put a limit on the maximal value of N ,  that can be used. Since the number of 
equations increases roughly with N &  computations become uneconomical beyond 
N ,  = 14, in which case a total of 770 equations have to be solved simultaneously. 
Only a t  the highest values of the Rayleigh numbers used did the difference of Nusselt 
number for N ,  = 12 and N ,  = 14 exceed 1 %. Other global quantities such as the 
average kinetic energy of motions show much less variation with N ,  than the Nusselt 
number. The same is true for the coefficients in (2.4), a t  least for relatively low values 
of 1, m and n. 

Although the Galerkin method employed in the present numerical analysis 
becomes less economical than other methods for N ,  2 12, it offers the advantage that 
the numerous symmetry properties of the steady solution can be easily incorporated 
in the analysis. In  addition the stability of the steady solution can be investigated 
readily. Such an analysis requires a considerable computational expense when other 
numerical methods are used and thus is usually omitted. To study the stability of the 
steady solutions of the form (2.4) we superimpose infinitesimal three-dimensional 
disturbances 6, $, 8 onto the steady solution. A general representation of these 
disturbances is given by 

6 = C tilmn exp {i(la, + d ) z + i(ma, + b )  y + d} g,(z), (2.6,) 

3 = C Ccmn exp(i(Ea,+d)z+i(ma,+b)y+vt} sinnn(z+i), (2 .6b )  

6 = C gLmn exp{i(la,+d)z+i(ma,+b)y+at} sinnn(z+i), ( 2 . 6 ~ )  

where the coefficients tilmn, EL,,, bcmn are complex numbers and the summation 
indices 1 ,  m run through all integers. Since the experimental evidence suggests that  
the horizontal periodicity interval of the knot solution is not changed by the 
instabilities in general, we shall restrict our attention to the case when the Floquet 
wavenumbers d and b vanish. This restriction offers the advantage that the 
disturbances separate into several subclasses because of the symmetry of the steady 
solution. In fact, without this separation into subclasses the stability matrices 
become so huge, based on the truncation condition 

lmn  

lmn 

Cmn - 

IZ)+lmJ+n > N ,  (2.7) 
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in analogy to the corresponding condition (2 .5)  for the steady solution, that a 
numerical computation of the eigenvalue B is not feasible for N ,  2 12. 

There are three different symmetry properties according to which the general 
manifold (2.6) of disturbances can be separated into eight subclasses in the special 
case b = d = 0. The first symmetry property actually applies in the general case. 
Because the steady solution exhibits non-vanishing coefficients almn only for even 
1 + m + n, the disturbances (2.6) separate into a class with even 1 + m + n and into a 
class with odd l+m+n.  These two classes will be distinguished by the letters E and 
0. The two other symmetry classifications follow from the symmetry of the function 
q4 in x and y. Thus the class of disturbances that is symmetric in x can be separated 
from the class that is antisymmetric in x provided the Floquet wavenumber d 
vanishes. The same property holds with respect to the y-dependence. In order to 
benefit from this property the general representation (2.6) has been replaced by one 
in which trigonometric functions are used. The eight classes of disturbances are 
denoted by 

ECC, ECS, ESC, ESS, OCC, OCS, OSC, OSS (2.8) 

where the second letter indicates that the x-dependence of 6 is described by 
cos la, x (C) or by sin Za, x (S) and the third letter indicates the corresponding prop- 
erty for the y-dependence. As in the case of the steady solution, has the same 
symmetries as 8, while J always has the opposite symmetries. 

With the separation (2.8) into eight subclasses the stability matrices from which 
the eigenvalues B must be derived attain a rank that is comparable with the number 
of non-vanishing coefficients almn, etc. of the steady solution. Among the eigenvalues 
(T only the one with the largest real part is of interest. At the point where ur becomes 
positive as a function of R (or as a function of a,, my) the steady solution becomes 
unstable. As long as all eigenvalues (T have negative or vanishing real parts the 
steady solution is considered to be stable. 

3. Steady knot convection 
As the Rayleigh number increases beyond the stability boundary for the onset of 

the knot instability, the two-dimensional rolls are modified only slightly a t  first by 
the growing knot disturbance, as is evident from the left side of figure 1.  Because the 
maxima in the y-direction of the vertical velocity are not shifted, the boundaries of 
the rolls remain unchanged. At higher Rayleigh numbers, however, the sinusoidal 
distortion of the isotherms has given way to the formation of highly concentrated 
rising and falling plumes as shown by figure 1 ( 6 )  (ii). This concentration is less visible 
in the picture of the vertically averaged temperature which includes the contributions 
from the boundary layers at both ends of the plumes. The star-like spread of the hot 
isotherms near the bottom boundary indicates that the rising plume is formed in part 
through the advection of ‘thermal ridges’ in the bottom boundary layer. This 
phenomenon will become even more evident in the discussion below of the velocity 
field. 

In  order to present the characteristic features of knot convection we have chosen 
relatively high Rayleigh numbers a t  which the steady solution is usually unstable, 
as will be discussed in the following section. While the instabilities introduce a time 
dependence, the time average of the solutions remains quite close to the steady 
solutions. The latter are thus still of physical interest in the regime where they are 
unstable. The form of the knot solutions depends much more on the Rayleigh 

12-2 
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FIGURE 1 .  Isotherms of steady knot convection at Rayleigh numbers (a )  R = 2.5 x lo4 and ( b )  
R = 8 x lo4 for P = 7. Rows (i), (ii) and (iii) describe the isotherms of the temperature averaged 
over the height of the layer JOdz, the temperature on the median plane O(x:,y,O), and the z- 
derivative a, 0 at the lower boundary, respectively. Only the deviation from the horizontal mean 
is shown : a, = 1.8, ay = 2.5 are the wavenumbers. Solid (dashed) lines describe positive (negative) 
values at n/5  of the extremal values, n = I ,  2 ,3 ,4 ,  while the dotted line indicates t,he zero-isotherm. 
The same notation is used in the following figures. 

number than on the Prandtl number. Since the knot instability sets in a t  lower 
Rayleigh numbers for lower Prandtl numbers, the evolution of its finite-amplitude 
properties also occurs faster with increasing Rayleigh number when P is lower. The 
asymmetry between rising plumes and the thin rising sheets of hot fluid between 
them is evident from figure 2 ;  the small wiggles on the isotherms in the high- 
Rayleigh-number case indicate a local limitation of the numerical approximation. 

The difference between rolls and knot solutions in the advection of the temperature 
field is also expressed by the profiles of the horizontally averaged temperature as 
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FIGURE 2. The isotherms in a vertical cross-section y = 0, for P = 2.5 a t  the Rayleigh numbers 
(a )  R = 1.5-x lo4, ( 6 )  R = 4 x lo4, ( c )  R = 10'. The wavenumbers are a, = 1.8,a, = 2.5. 
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e 
FIGURE 3. The profiles of the horizontally averaged temperature for the knot solution (a )  and the 
roll solution (6) in the case R = 4 x lo4, P = 4. Since the profiles are antisymmetric in z ,  only the 
upper half is shown. 

shown in figure 3 for P = 4.0. The typical reversal of the mean temperature gradient 
in the interior is reduced to about f of its value in the case of rolls. The concentrated 
rising plumes of the knot solution spread over a smaller area than the rising sheets 
of roll convection as they reach the upper boundary. Ultimately the intricate 
structure of the knot solution permits a higher heat transport than in the case of the 
two-dimensional rolls, as we shall discuss below. 
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FIGURE 4. The lines of constant vertical velocity in the planes z = 0 (left) and z = -0.3 (right) 
for the same three cases as in figure 2. 

The evolution of the velocity field as function of the Rayleigh number is shown in 
figure 4. While the concentration of the vertical velocity in the narrow rising and 
falling plumes is not as pronounced as in the case of the temperature field, the rising 
ridges near the lower boundary become well established with increasing Rayleigh 
number. The pictures discussed so far indicate the characteristic eruptions from the 
thermal boundary layers and the collection of these ridges into the narrow plumes. 
Figure 5 shows the velocity field €or the two cases for which the temperature field was 
described in figure 1. Because of the higher Rayleigh and Prandtl numbers the 
narrowness of plumes and sheets appears to be accentuated in comparison to the 
curves of figure 3. But in all qualitative respects the velocity fields appear to be very 
similar. I n  figure 5 the streamlines of the toroidal component of the velocity field 
have also been displayed. The toroidal component vanishes in the case of two- 
dimensional rolls and is generated through the three-dimensional momentum 
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FIGURE 5 .  The lines of constant vertical velocity in the planes (a )  z = 0 and ( b )  z = -0.3 and 
(c) the lines of constant $ in the plane z = -0.3 for R = 2.5 x lo4 (left) and R = 8 x lo4 (right) 
with a, = 1.8, ay = 2.5,  P = 7. 

advection by the poloidal component. Because the amplitude of @ is very small, the 
toroidal velocity field has a more subtle effect on the dynamics of knot convection. 

Figures 6, 7 ,  and 8 show the heat transport by steady knot convection in 
comparison with that of rolls. Also shown is the kinetic energy of the poloidal 
component of motion, 

(3.1) Epol = f<}V x (V x kry))2>. 

The Nusselt numbers for the knot solution and the corresponding two-dimensional 
solution are actually rather close and a fine scale has to be used to distinguish the 
curves in the plots. As can be seen from the cases of different wavenumbers ay, the 
heat transport differs more for different wavelengths than between three- and two- 
dimensional solutions a t  a given wavelength 2x/a, .  While the Nusselt number of the 
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FIGURE 6. Nusselt number for rolls (-.-) and for knots (-). and kinetic energy E,,, for rolls 
(-. .--) and for knots (---) as functions of the Rayleigh number in the case P = 7.0. The upper set 
of curves correspond to a, = 1.8, ay = 2.5, the lower set to a, = 1.6, ay = 2.0. 
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FIGURE 7. Same as figure 6 but for P = 4.0. The uppermost set of four curves corresponds to 
a, = 1 .7,ay = 2.5, the intermediate set to a, = 1.5,ay = 2.0, and the set a t  the bottom to a, = 1.2, 
ay = 1.5. 

knot solution drops slightly below that of the roll solution after the bifurcation, this 
relationship becomes reversed as the Rayleigh number increases. At the higher 
Prandtl numbers i t  is not even clear whether the Nusselt number for knots is always 
lower than that of rolls a t  the point of bifurcation, because the two values do not 
match exactly a t  the point of bifurcation for numerical rcasons. The two-dimensional 
solution is usually computed a t  a higher level of truncation than the three- 
dimensional one. 
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FIGURE 8. Same as figure but for P = 2.5. The uppermost set of four curves corresponds to 
a, = 1.7,a, = 2.5, the intermediate set to a, = 1.4,aY = 2.0, and the set a t  the bottom to a, = 1.1, 
a, = 1.5. 

I I ' " ' I  I I ' " I  

FIGURE 9. The kinetic energy of the toroidal component of knot convection as a function of the 
Rayleigh number for the Prandtl numbers P = 2.5 (---), P = 4.0 (-), and P = 7.0 (-.-). The 
curves for a given Prandtl number correspond to different wavenumber combinations and their 
sequence from top to bottom on the left-hand side is the same as in figures 6, 7 and 8, 
respectively. 
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The change in the kinetic energy is much more pronounced than the change in the 
Nusselt number, and the kinetic energy also recovers much more slowly than thc 
heat transport with increasing Rayleigh number. The kinetic energy of knot 
convection is still smaller than the kinetic energy of rolls if the kinetic energy of the 
toroidal component, 

(3.2) E,,, = (IV x k W > 1  

is included except in the case of P = 7. Only as the Rayleigh number is increased far 
beyond the critical value R,, does the total kinetic energy of knot convection exceed 
that of rolls. 

The toroidal kinetic energy (3.2) is shown in figure 9 as a function of the Rayleigh 
number for different Prandtl numbers and wavenumbers. It increases nearly linearly 
beyond the point of bifurcation, R = R,,, but remains small in comparison with the 
poloidal kinetic energy. The meaning of the sudden upturn of the curve for ay = 2.0, 
Y = 7 a t  the high-Rayleigh-number end has not found an explanation yet. But it 
does not seem to be caused by the numerical truncation. 

Through the development of small scales in the form of eruptions from the thermal 
boundary layers and in the form of narrow plumes the knot-convection flow 
ultimately achieves a higher heat transport than can be carried by convection in the 
form of rolls. But in contrast to the onset of bimodal convection in a high-Prandtl- 
number fluid, which can be interpreted in terms of the instability of the thermal 
boundary layers (Busse 1967), the onset of knot convection is a much more complex 
problem which cannot be explained in simple terms. While the potential energy 
residing in the thermal boundary layers certainly contributes to the development of 
small-scale structures near the boundaries, a major influence is the strong momentum 
advection into the narrow plumes. This advection gives rise to an efficient heat 
transfer a t  the opposite boundary as is indicated by the small area of negative 
a(f?-Q)/az in figure 1 ( b )  (iii). A correspondingly larger area is thus available for the 
formation of the hot plume. 

4. Instabilities of steady knot convection 
As has already been mentioned in $2, the stability analysis is carried out with 

respect to periodicity-preserving disturbances with vanishing b, d .  From the 
experimental evidence (Busse & Clever 1979) it appears that wavelength-changing 
instabilities are not important. This observation is not surprising since the horizontal 
periodicity interval of knot convection is relatively large. As will be seen below, 
typical instabilities introduce small-scale structures arising from the thermal 
boundary layers. 

Although the manifold of possible disturbances is significantly reduced by the 
assumption of vanishing Floquet parameters, there is still a bewildering variety of 
instabilities. I n  table 1 a number of instabilities are listed for the steady solutions 
studied in the preceding section. I n  addition to the instabilities occurring at  the 
lowest Rayleigh number R,,, we have listed other instabilities which occur close to  
this value. The cases with the lowest values of the wavenumbers az, al/ have not been 
included in table 1 because the steady solution is always unstable. In  fact the 
oscillatory instabilities precede the transition to the steady knot solution in those 
cases, as can be seen from figures 5 and 12 of Bolton et al. (1986). Once a steady knot 
solution becomes established with a finite amplitude, the growth rates of competing 
instabilities increase much more slowly with increasing Rayleigh number and the 



Three-dimensional knot convection in a layer heated from below 357 

Mean 
P a, %I RII %I ffi  flow Symm. 

2.5 1.7 2.5 11  589 31 987 63.4 N oss 
36 975 88.9 R ECS 
37 422 89.6 U ECS 

2.5 1.4 2.0 14541 29 649 52.1 U osc 
29 896 70.2 R ECS 
30022 70.5 U ECS 

4.0 1.7 2.5 1491 1 38814 192.6 R ESC 
38 802 192.5 U ESC 

4.0 1.5 2.0 17 761 29 890 147.2 U ESC 
29 92 1 147.4 R ESC 
35 161 180.2 N occ 
35 243 227.9 U osc 
36 065 231.6 N ECC 

7.0 1.8 2.5 23641 33 79 1 224.1 N occ 
34 34 1 212.3 U ESC 
34 365 212.4 R ESC 
39 454 240.0 N ECC 

TABLE 1. Instabilities of stationary knot solutions with given wavenumbers a,,a,. R,,, is the 
critical Rayleigh number for the onset of the instability and ut is its frequency. The symmetry is 
defined according to classification (2.9) ; N, R, U indicate no, restricted, unrestricted mean flow. 

onset of oscillatory instabilities occurs a t  relatively high values for R,,, as can be seen 
from the table. 

Before we continue to discuss the properties of the instabilities, we must deal with 
a property of the disturbances (2.6) in the limit d = b = 0. I n  the case b = d = 0 the 
coefficients a"oon and Eoon do not contribute to the disturbance velocity field and the 
stability equations are satisfied independently of the values of doon and Eoo, which 
therefore can be set equal to  zero. The velocity field described by the coefficients 
Coo, and toon in the limit of vanishing b and d becomes a mean flow which is not 
described by the representation (2.6) in the case b = d = 0. For this reason we shall 
exclude the case 1 = m = 0 in the summations (2.6a, b)  and instead add mean flow 
components to the representation (2.6), 

U',, = C v(nz,,) sinnn(z+&) exp{at}, 
n 

(4.1 a) 

where the coefficients U t ) ,  U;,) are given by 

+ p y i - ( -  i)n)2/(nn)3, (4.1 b)  

U(Y) = - (nxp)-l e-fft f; 2 eosnx(z+&) [d,#(a,,~-a,~)+dz~la,,~-a,1G.l1dz 

+r(,)(1-(-1)n)2/(n~)3. (4.1 c )  

The bar indicates the horizontal average and the constant r,~ represents a constant 
pressure gradient which we have introduced to take into account the possible effect 
of distant sidewalls on the mean flow. Unlike the fluctuating component of the 
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velocity field, which may be affected over the distance of one wavelength by the 
presence of a sidewall, the mean flow will be influenced over much larger distances. 
Assuming two extreme cases we require that $x,Y) either vanishes or is determined 
by the condition that the vertically averaged mean flow vanishes, 

unrestricted mean flow: q(,*Y) = 0, ( 4 . 2 ~ )  

restricted mean flow: ~ ( ~ ' y )  is determined by the condition 

C Vg,"'( 1 - ( -  l)")/nn = 0. 
n 

(4.2 6 )  

The symmetry of the disturbances ( 2 . 7 )  requires that non-vanishing mean-flow 
coefficients U f ) ,  U',") can be expected only when $,d  are described by sin-functions 
in the x- or y-directions, respectively. Only disturbances with SC or CS in list (2.8) 
are thus associated with a mean-flow component. The mean-flow profile U,,y is 
antisymmetric in z for even disturbances like ESC or ECS, while it is symmetric in 
z for OSC, OCS. Only in the latter case can a mean pressure gradient be generated. 

In  considering the instabilities listed in table 1 we can distinguish two classes : the 
blob instabilities which exhibit the same symmetry in the y-direction as the basic roll 
solution; and the shift instabilities which have the opposite symmetry in the y- 
direction and tend to shift the basic roll in the transverse direction. As is evident 
from the table, the blob instabilities predominate a t  P = 4 and P = 7, while the shift 
instabilities occur only in the low-Prandtl-number cases. The blob instabilities are 
essentially equivalent to the B02-instability of rolls (Bolton et uZ. 1986), which is also 
indicated by the relatively high values of the frequency cri. I n  the cases of OCC and 
OSC the dominant t,erms are cos2a,x and sin2a,x, respectively. In  this way the 
symmetry corrcsponds to the symmetry of the B02-instability. Because rolls are x- 
independent, the B02-inst'ability can be described by either sin a, x or cos a, x. In the 
case of the knot solution the translational invariance in the x-direction no longer 
exist, but sin a, x- and cos a, x-type disturbances still have similar growth rates as is 
evident from the table. 

It i8 worth noting that the mean flow has very little influence on the growth of 
instabilities. The Rayleigh numbers R,,, and the frequencies cri for restricted and 
unrestricted cases are very close and, as we have just mentioned, the replacement of 
sina,x-terms by cosa,x-terms also has little influence even though there is a mean 
flow associated with the instability in one case, but not in the other. 

5. Oscillatory knot convection 
Since all instabilities of the steady knot solution occur in the form of Hopf 

bifurcations, a new numerical method must be employed in order to follow in time 
the evolving solutions. By replacing the representation ( 2 . 4 ~ )  by either 

C al,,(t) cos la, x cos may yg,(z), (5 . la)  

or $ESC = C [almn ( t )  cos la, x + l l m n ( t )  sin la, x] cos ma, yg,(z) , ( 5 . l b )  

or qkECs = C cosZa,x[a,,,(t) cosma,y+iZ,,,(t) sinma,y]g,(z), ( 5 . 1 ~ )  

or 

I ,  m, n 
$ECC = 

1 ,  m, n 

1 ,  m ,  n 

$ESS = C [al,,(t) cos la, x COB ma, y + l z m n ( t )  cos la, x sin ma, y 
l ,m,n 

-t al,,(t) sin b, x eos may y + ul,,(t) sin la, x sin la, y] g n  ( x ) ,  (5.1 d ) 
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and using analogous replacements for expressions (2.4b, c ) ,  ( 4 . 1 ~ )  we obtain instead 
of the algebraic equations a system of ordinary differential equations in time. The 
procedure is the same in the case of the odd instabilities OCC, OSC, OCS, OSS, except 
that the restriction l + m + n  = even must be dropped. Using the semi-implicit 
Crank-Nicholson scheme for the numerical integration we find that the solutions 
become periodic in time after initial transients. But the oscillatory part of the 
solutions always remains a small part of the total solution and - in a time-averaged 
sense-the oscillatory knot solutions do not differ much from the steady knot 
solutions. 

Because of the computational expenses in following the typically long transients 
in the evolution of the oscillatory instabilities, we shall restrict our attention to two 
examples. In  figure 10 the case of the ECS-instability for P = 2.5 is considered, which 
occurs at a relatively low Rayleigh number. The comparison of the velocity field at 
z = -0.3 and a t  z = 0 indicates the periodic formation of ridges in the hot thermal 
boundary layer which are then advected to the central plume. The fairly well 
preserved symmetry in the y-direction with respect to the position of the rising sheet 
of fluid is surprising. While the position of the sheet has been shifted slightly from 
its original position in the centre of the picture there is otherwise little evidence of 
the ‘shifting’ property of the ECS-disturbances. It appears that only a small 
asymmetry is needed to trigger the oscillations which occur as if the horizontal 
symmetry of the knot solution is preserved. The time-averaged Nusselt number 
appears to be slightly increased by a fraction of the order of 0.2 %, while the poloidal 
kinetic energy is decreased by a comparable amount in relation to the corresponding 
steady solution. A more significant increase of about 20% is exhibited by the time- 
averaged toroidal energy Etor, which indicates that the advection of the periodic 
eruptions from the thermal boundary layer is connected with an increase in the 
vertical vorticity of motion. 

The second example of oscillations is shown in figure 1 1  for P = 7. Since the OCC- 
instability has induced the transition in this case, the horizontal symmetry remains 
unchanged. While the eruption of ridges from the boundary layer is noticeable in this 
case, it is much less pronounced than in the low-Prandtl-number case. Instead the 
‘breathing ’ aspect has become stronger. The maximum of the vertical velocity shifts 
back and forth between the central plume and the central position in the sheet, as 
is evident in the plane z = -0.3. At the midplane of the layer the highest value of the 
vertical velocity always occurs in the plume, but the velocity in the sheet still varies 
strongly throughout the period of oscillation. 

Obviously the two examples presented here can provide only a rough idea of the 
rich variety of features to be expected in time-dependent knot convection. Of 
particular interest for further investigation will be the large-wavenumber cases for 
which oscillatory instabilities precede the transition to the steady knot solution. The 
combination of the steady knot solution with the oscillatory properties is likely to 
produce some striking effects in those cases. 

6. Concluding remarks 
The oscillatory knot convection discussed in the preceding section is of special 

importance for the interpretation of experimental observations because it represents 
a model for spoke-pattern convection. This latter form of convection occurs over a 
wide range of the Rayleigh number for moderate to larger Prandtl numbers (Busse 
& Whitehead 1974; Busse 1981). In experiments started with random initial 
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convections there is no preferred direction for the spoke-pattern cells, unlike the 
oscillatory knot solution which retains in the form of two unequal directions the 
memory of the roll solution from which it has originated. Except for this minor point, 
however, the theoretical solution reflects all qualitative aspects of the observed 
spoke-pat tern cells. The small-scale spokes correspond to thermal ridges which erupt 
nearly periodically from the thermal boundary layers and move to the central plumes 
which remain essentially stationary just as they do in figures 10 and 11. When 
experiments are done with controlled initial conditions, spoke-pattern cells retaining 
part of the original roll structure are obtained (Busse & Whitehead 1974). Since the 
experiments are mostly done a t  higher Prandtl numbers than those considered in this 
paper, the transition to bimodal cells precedes the transition to spoke-pattern cells. 
But the latter resemble very closely the oscillatory knot solution as shown in figure 
10. The property that the observed spokes are not truly periodic must be attributed 
to the phenomenon of many competing instabilities which introduces an element of 
randomness into the observed convection flow. 

The fact that the transition to oscillatory knot convection requires a small amount 
of asymmetry seems to be typical of other transitions as well. McLaughlin & Orszag 
(1982) noted in their analysis that  symmetry-breaking perturbations were needed for 
the transition to chaotic thermal convection in air. In  the present case it is quite clear 
that the nature of the asymmetry is of secondary importance in that the Rayleigh 
numbers R,,, do not differ much for instabilities of different symmetries. It will be 
of interest to study the further evolution of the oscillatory knot solution in order to 
determine whether additional breaks of spatial symmetry are needed for a transition 
to chaotic time dependence. 

The research described in this paper has been supported by the Atmospheric 
Sciences Section of the US National Science Foundation. 
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